Roll No.

S.C.No.-21703205

M. Sc. EXAMINATION, 2022

(Second Semester)

(Batch 2021)

MATHEMATICS

21MTH-205

Computational Techniques

Time 3 Hours

Maximum Marks 80

Note Attempt Five questions in all. All questions carry equal marks.

- (a) Define Rounding error. Find the absolute error if the number X = 0.00545828 is rounded off to three decimal digits.
 - (b) Find √5, correct to four decimal places by Newton's method.

(5-622-17M) H-21703205(2PG128)

P.T.O.

(c) Evaluate $\Delta^3 f(2)$ from the data by constructing the table of differences

x	0	1	2	3	4	
f(x)	1.0	1.5	2.2	3.1	4.6	

- (d) Given (x_1, y_1) , (x_2, y_2) , (x_3, y_3) , write Lagrange's interpolation formula
- (e) Use forward differences, the formula for $\frac{dy}{dx}$
- (f) f(x) is given by

x	0	0.5	1	1.5	2.0
f(x)	1	0.8	0.5	0.25	0.10

Evaluate $\int_{0}^{2} f(x)dx$, using Trapezoidal rule.

(g) Solve $\frac{dy}{dx} = x + y$, y(1) = 0 at 1.1, using Taylor's series method.

(b) Solve the difference equation:

$$u_{n+3} - 2u_{n+2} - 5u_{n+1} + 6u_n = 0.$$

- 2. (a) Find the absolute and relative errors if the number 37.46235 is (i) rounded off to four significant figures and (ii) truncated to three decimal digits.
 - (b) Solve, by Jacobi's iteration method, the equations:

$$20x + y - 2z = 17;$$

$$3x + 20y - z = -18;$$

$$2x - 3y + 20z = 25.$$

- 3. (a) Find a root of the equation $x^3 2x 5 = 0$, using secant method, correct to three decimal places.
 - (b) Discuss convergence of Newton-Raphson method and find a root of equation x³-3x+1=0 by this method, correct to two decimal places.

(a) If
$$y_{10} = 3$$
, $y_{11} = 6$, $y_{12} = 11$, $y_{13} = 18$, $y_{14} = 27$, find y_{4} .

(5-01-175) H-21703205(2PG128)

P.T.O.

(b) Find the cubic polynomial which takes the following values:

х	0	1	2	3	
f(x)	1	2	1	10	

Hence or otherwise evaluate f(4)

5. (a) Find the polynomial f(x) by using Lagrange's formula

			0	
x	0,	1	3	6
f(x)	18	10	-18	90

Also find the slope of the curve at x = 2

(b) The following values of x and y are given

x	1	2	3	4
y	1	2	5	11

Find the cubic splines and evaluate y(1.5).

6. (a) Find y'(0) and y''(0) from the following table:

x	0	ī	2	3	4	5	l
У	4	8	15	7	6	2	ŀ

3

(b) Using the Richardson extrapolation method, find y"(0.6) from the following tabulated function by applying the formula

$$F(x) = \frac{1}{h^2} [y(x+h) - 2y(x) + y(x-h)]$$
with $h = 0.4, 0.2, 0.1$

	02	04	0.5	0.6	0 7	0.8	1.0
1(x)	1.42	1 88	2 13	2 39	2 66	2 94	3 56

- (a) I valuate $\int_{0}^{12} \frac{dx}{1+x^2}$ by using Trapezoidal

rule with h = 2 and by Simpson's $\frac{1}{3}$ rd rule with h = 2

(b) Use Romberg's method to compute $\int_{0}^{1} \frac{dx}{1+x}$ correct to three decimal places.

8. (a) Solve the differential equation

$$\frac{dy}{dx} = -xy^2, \quad y = 2 \quad \text{at} \quad x = 0$$

by modified Euler's method and obtain x = 0.2 in two steps of 0.1 each

- (b) Given $\frac{dy}{dx} = 1 + y^2$; y(0) = 0; find y(0.2)and y(0.4), taking h = 0.2
- (a) Find the largest eigen-value and the corresponding eigen-vector, by Power

method of the matrix
$$\begin{bmatrix} 1 & -3 & 2 \\ 4 & 4 & -1 \\ 6 & 3 & 5 \end{bmatrix}$$

(b) Solve the difference equation :

$$u_{n+2} - 2\cos\alpha \ u_{n+1} + u_n = \cos\alpha n \ .$$

5